Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Cristal Structure Analysis Software. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Muthmann, W. (1889). Z. Krystallogr. Mineral. 15, 385-403.
Muthmann, W. \& Nef, J. U. (1887). Ber. Dtsch Chem. Ges. 20, 636638.

Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press
Skraup, Z. H. (1880). Ann. Chem. 201, 291-333.
Spek. A. L. (1990). Acta Cryst. A46, C-34.
Stewart, R. F.. Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3174-3187.
Stuhlmann, C. C. (1888). Z. Krrstallogr. Mineral. 14, 155-165.
Weidel, H. (1874). Ann. Chem. 173, 76-116.
Zachariasen. W. H. (1963). Acta Cryst. 16. 1139-1144.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1999). C55, 1503-1506

Bis(1,10-phenanthrolin-1-ium) chlorodi-iodide(1-) dichloroiodide(1-)

Yan-Qia Wang, Zhe-Ming Wang, Chun-Sheng Liao and Chun-Hua Yan

State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, People's Republic of China. E-mail: chyan@chemms.chem.pku.edu.cn
(Received 22 January 1999; accepted 4 June 1999)

Abstract

The title compound, $2 \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} \cdot \mathrm{I}_{2} \mathrm{Cl}^{-} \cdot \mathrm{ICl}_{2}^{-}$, consists of 1,10 -phenanthrolin- 1 -ium (phenH^{+}) cations, trihalide anions $\left(\mathrm{ICl}_{2}^{-}\right)$and the polyanion $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$. The phenH ${ }^{+}$ cations stack in columns and the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ polyanion forms chains, both running along the a direction. The packing of the phenH ${ }^{+}$columns produces channels occupied by the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chains and cavities occupied by the ICl_{2}^{-}anions. Hydrogen bonds between the $\mathrm{N}-\mathrm{H}$ groups of phenH ${ }^{+}$and Cl atoms of the $\mathrm{I}_{2} \mathrm{Cl}^{-}$ chain, along with many weak $\mathrm{C}-\mathrm{H} \cdots X(X=\mathrm{Cl}$, I) interactions, play important roles in the formation of the crystal structure.

Comment

Polyhalides display a variety of structures and belong to a class of long known but poorly understood ma-
terials (Poli et al., 1992; Bailar et al., 1973). During the last decade, various compounds with interesting structures were found when protonated aromatic nitrogen bases were combined with polyhalides. Many of these structures possess interesting hydrogen-bonding patterns. These aromatic nitrogen bases include pyridine (El-Kholi et al., 1988; Hendrixson et al., 1991), bipyridine (Tebbe \& Bittner, 1995; Liu et al., 1992) and quinoline (Liu et al., 1991). Rich polyhalide chemistry is found in these simple systems with structures varying from discrete to extended. For example, in the $2,2^{\prime}$-bipyridine $-\mathrm{I}_{2}-\mathrm{HI}$ (Tebbe \& Bittner, 1995) system, different polyiodides are produced simply by adjusting the molar ratio of the reactants. We have investigated recently the 1,10 -phenanthroline- $\mathrm{HCl}-\mathrm{KI}-\mathrm{I}_{2}$ system. At least three different types of crystals have been obtained. The title compound, (I), is one of them, and its crystal structure is reported here.

(I)

The asymmetric unit consists of two mono-protonated 1,10-phenanthrolinium cations (phenH^{+}) and two different trihalide moieties, ICl_{2}^{-}and $\mathrm{I}_{2} \mathrm{Cl}^{-}$(Fig. 1). Both phenH ${ }^{+}$cations are planar, with deviations of the nonH atoms from the least-squares plane of less than $0.020(3) \AA$ in the phenH ${ }^{+}$cation (A) consisting of N 1 , $\mathrm{N} 2, \mathrm{Cl}$ to C 12 , and 0.039 (4) \AA in the phenH ${ }^{+}$cation (B) defined by $\mathrm{N} 3, \mathrm{~N} 4, \mathrm{C} 13$ to C 24 . The angle between the two planar cations in the asymmetric unit is $53.68(6)^{\circ}$. Compared with the neutral base, 1,10-phenanthroline (Nishigaki et al., 1978), the bond distances in the phen H^{+}cations show no significant differences, but some internal bond angles vary slightly. The internal

Fig. 1. The molecular structure of (I) drawn with 30% probability displacement ellipsoids.
bond angles at the protonated N atoms (N 1 and N 3) are ca 5° larger than those in neutral 1,10 -phenanthroline, while those at the neutral N atoms (N 2 and N 4) are slightly smaller than those in 1,10 -phenanthroline. The enhancement of the internal angles at the protonated N atoms was also reported for quinolinium (quinH ${ }^{+}$; Liu et al., 1991), 8-hydroxyquinolinium (Balasubramanian \& Muthiah, 1996a,b) and bipyridinium (Liu et al., 1992). This is due to the formation of $\mathrm{N}-\mathrm{H}$ bonds, which have a less repulsive effect on the $\mathrm{N}-\mathrm{C}$ bonds than the lone electron pair (Shriver et al., 1994), and the $\mathrm{N}-\mathrm{H} \cdots X$ hydrogen bond (Jebamony \& Muthiah, 1998).

The phenH ${ }^{+}$cations, A and B, stack alternately to form columns running along the a direction. In one column, the neutral rings of adjacent phenH ${ }^{+}$cations overlap each other, and are opposite in orientation. They are almost parallel to each other, as the angle between the stacked A and B cations is $1.35(10)^{\circ}$. The cations are inclined relative to the stacking direction and are separated by ca $3.55 \AA$.
The ICl_{2}^{-}anion is almost linear and symmetric, with $\mathrm{Cl}-\mathrm{I}$ distances of 2.5417 (11) and 2.5575 (10) \AA, and a $\mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ angle of $178.65(4)^{\circ}$, similar to that reported in the literature (Bailar et al., 1973). The $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ polyanion, which is an infinite chain with the $\mathrm{I}_{2} \mathrm{Cl}^{-}$moiety as the chain unit, is the most interesting part of the structure. To the best of our knowledge, this work is the first structural characterization of the $\mathrm{I}_{2} \mathrm{Cl}^{-}$moiety in an organic structure. The I-I distance of 2.7371 (4) \AA is obviously smaller than those in I_{3}^{-} (Tebbe \& Bittner, 1995; Liu et al., 1991, 1992), but close to that in neutral iodine (Bailey et al., 1992; Tebbe \& Nagel, 1995). The I-Cl distances of 3.0404 (9) and 3.1584 (9) \AA indicate that the I-Cl bonds are covalent, as these bond distances are much smaller than the sum of the van der Waals radii ($c a 4.2 \AA$). The $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain propagates along the a direction and fluctuates slightly, as the $\mathrm{I}-\mathrm{Cl}-\mathrm{I}$ and $\mathrm{I}-\mathrm{I}-\mathrm{Cl}$ angles differ slightly from 180°.
The packing of the phenH ${ }^{+}$columns gives two different types of interstices for the occupation of the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain and the ICl_{2}^{-}anion. A large infinite channel is formed by three adjacent phenH ${ }^{+}$columns and is occupied by the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain. The inner wall of the channel is lined with the positive ends, i.e. the \mathbf{H} atoms of $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds of the phenH H^{+}cations. These $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds point to the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain in the channel. In this combination of positive channel and negative chain, many $\mathrm{C}-\mathrm{H} \cdots X(X=\mathrm{Cl}$, I) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions exist. Each Cl atom of the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain forms two $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with two phenH ${ }^{+}$cations in the two adjacent phenH ${ }^{+}$columns. The $\mathrm{N} \cdots \mathrm{Cl}$ distances of 3.181 (3) and 3.162 (3) \AA, and the $\mathrm{N} 1 \cdots \mathrm{Cl} \cdots \mathrm{N} 3$ angle of $103.78(8)^{\circ}$, are comparable to those found in $\left[\left(\text { quinH }^{+}\right)_{3} \mathrm{Cl}\left(\mathrm{I}_{3}\right)_{2}\right]$ (Liu et al., 1991). The Cl atom is also involved in one $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction or hydrogen bond, with a
short $\mathrm{H} \cdots \mathrm{Cl}$ contact, from the third phenH ${ }^{+}$column. The Cl atom is therefore surrounded by three H atoms with short $\mathrm{H} \cdots \mathrm{Cl}$ contacts of 2.53 (4) and 2.48 (4) \AA for two N-H groups, and 2.82 (5) A for the C-H group. The three $\mathrm{H} \cdots \mathrm{Cl} \cdots \mathrm{H}$ angles are 117 (1), 102 (1) and $140(1)^{\circ}$. The I atoms of the $\left[\mathrm{I}_{2} \mathrm{Cl}^{-}\right]_{n}$ chain are also involved in some $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions, with short $\mathrm{H} \cdots \mathrm{I}$ distances ranging from 3.05 (5) to 3.13 (5) \AA. The other interstices are small long-shaped cavities. They are formed between another three adjacent phenH ${ }^{+}$columns and are occupied by ICl_{2}^{-}anions. Each ICl_{2}^{-}anion is surrounded by nine phenH^{+}cations, and the two negative ends of the ICl_{2}^{-}anion, i.e. the Cl atoms, point to the two positive pyridinum rings of the two cations at the top and the bottom of the cavity. The inner side wall of the cavity is also built by the H atoms of $\mathrm{C}-\mathrm{H}$ groups provided by seven surrounding phen H^{+}cations in a style similar to those found in the aforementioned channel. So there are also many $\mathrm{C}-\mathrm{H} \cdots X(X=\mathrm{Cl}, \mathrm{I})$ interactions in this part of the structure, with short $\mathrm{H} \cdots \mathrm{Cl}$ distances ranging from 2.84 (4) to 2.93 (4) \AA and $\mathrm{H} \cdots \mathrm{I}$ distances ranging from 3.24 (4) to 3.31 (4) \AA. These intermolecular interactions certainly have an important role in and give interesting characteristics to the packing of the crystal structure (Fig. 2).

Fig. 2. A packing diagram for (I) viewed along the a direction. H atoms have been omitted for clarity.

Experimental

$\mathrm{KI}(1.17 \mathrm{~g})$ and $\mathrm{I}_{2}(1.36 \mathrm{~g})$ were dissolved in a mixed solution of ethanol (70 ml) and concentrated hydrochloric acid (30 ml) (36%). On addition of 1,10 -phenanthroline $(0.50 \mathrm{~g})$ to the above solution (10 ml), a dark-red precipitate formed. The mixture was stirred for 48 h , then filtered. The filtrate was left at room temperature to allow the solvent to evaporate. Light-yellow transparent rectangular crystals were obtained after two weeks and dark-red transparent columnar crystals of the title compound were obtained after one month. Elemental analysis, found: C 33.93 , H 2.00 , N 6.67%; analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{I}_{3} \mathrm{~N}_{4}$: C 33.90, H2.12, N 6.50%.

Crystal data

$2 \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} \cdot \mathrm{I}_{2} \mathrm{Cl}^{-} \cdot \mathrm{ICl}_{2}^{-}$
$M_{r}=849.47$
Monoclinic
$P 2_{1} / c$
$a=8.9031$ (4) £
$b=15.7897$ (6) \AA
$c=20.0697$ (7) \AA
$\beta=99.569(4)^{\circ}$
$V=2782.09(19) \AA^{3}$
$Z=4$
$D_{x}=2.028 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
MACH3 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.441, T_{\text {max }}=0.497$
7821 measured reflections
7376 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.075$
$S=1.084$
7376 reflections
379 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0266 P)^{2}\right.$
$+2.6180 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.617 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.783 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{II}-\mathrm{Cl1}$	$2.5417(11)$	$\mathrm{I} 3-\mathrm{Cl} 3$	$3.0404(9)$
$\mathrm{II}-\mathrm{Cl} 2$	$2.5575(10)$	$\mathrm{Cl} 3-2^{\mathrm{i}}$	$3.1584(9)$
$\mathrm{I} 2-\mathrm{I} 3$	$2.7371(4)$		
$\mathrm{ClI}-\mathrm{II}-\mathrm{Cl} 2$	$178.65(4)$	$\mathrm{I} 3-\mathrm{Cl} 3-\mathrm{I} 2^{\prime}$	$174.44(3)$
$\mathrm{I} 2-\mathrm{I} 3-\mathrm{Cl} 3$	$172.11(2)$	$\mathrm{Cl} 3^{11}-\mathrm{I} 2-\mathrm{I} 3$	$168.68(2)$
Symmetry codes: (i) $x-1, y, z ;$ (ii) $1+x, y, z$.			

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	$0.76(4)$	$2.53(4)$	$3.162(3)$	$142(4)$
$\mathrm{N} 3-\mathrm{H} 10 \cdots \mathrm{Cl} 3$	$0.80(4)$	$2.48(4)$	$3.181(3)$	$148(4)$
$\mathrm{C} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{1}$	$0.88(4)$	$2.90(4)$	$3.606(4)$	$138(4)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl1}$	$0.93(5)$	$2.90(5)$	$3.667(5)$	$141(4)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{I} 2^{111}$	$0.92(5)$	$3.05(5)$	$3.813(4)$	$142(4)$
$\mathrm{C} 13-\mathrm{H} 11 \cdots \mathrm{Cl} 2$	$0.86(4)$	$2.93(4)$	$3.531(4)$	$128(3)$
$\mathrm{C} 14-\mathrm{H} 12 \cdots \mathrm{I} 1$	$0.89(4)$	$3.24(4)$	$3.900(4)$	$133(3)$
$\mathrm{C} 15-\mathrm{H} 13 \cdots \mathrm{Cl} 3^{\prime \prime}$	$0.87(5)$	$2.82(5)$	$3.634(4)$	$158(4)$
$\mathrm{C} 18-\mathrm{H} 15 \cdots \mathrm{I} 3^{\circ}$	$0.95(5)$	$3.13(5)$	$3.956(4)$	$146(4)$
$\mathrm{C} 21-\mathrm{H} 17 \cdots \mathrm{Cl} 2^{\prime \prime}$	$1.04(5)$	$2.84(4)$	$3.722(4)$	$143(3)$
$\mathrm{C} 22-\mathrm{H} 18 \cdots \mathrm{I} 1^{* 11}$	$0.86(4)$	$3.31(4)$	$3.983(4)$	$137(4)$

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, 1-y, 1-z$; (iii) $x-1, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vi) $1+x, \frac{3}{2}-y, \frac{1}{2}+z$; (vii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$.
All H atoms were located by difference Fourier synthesis, and refined isotropically. $\mathbf{C}-\mathrm{H}$ distances are in the range 0.84 (4)1.09 (6) \AA.

Data collection: CAD-4 ARGUS Software (Nonius, 1996). Cell refinement: CAD-4 ARGUS Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick. 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: SHELXTLPC (Sheldrick, 1990) and ZORTEP (Zsolnai, 1998). Software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (Nos. 29701001 \& 29525101) and Founder Foundation of Peking University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1070). Services for accessing these data are described at the back of the journal.

References

Bailar, J. C., Emeleumm, H. J., Hyholm, S. R. \& Trotman-Dickenson, A. F. (1973). In Comprehensive Inorganic Chemistry, 4th ed. Oxford: Pergamon Press.
Bailey, R. D., Buchanan, M. L. \& Pennington, W. T. (1992). Acta Cryst. C48, 2259-2262.
Balasubramanian, T. P. \& Muthiah, P. T. (1996a). Acta Cryst. C52, 1017-1019.
Balasubramanian, T. P. \& Muthiah, P. T. (1996b). Acta Cryst. C52, 2072-2073.
El-Kholi, V. A., Müller, U., Christophersen, R. \& Dehnicke, K. (1988). Acta Cryst. C44, 1233-1 235.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Hendrixson, T. L., ter Horst, M. A. \& Jacobson, R. A. (1991). Acta Cryst. C47, 2141-2144.
Jebamony, J. R. \& Muthiah, P. T. (1998). Acta Cryst. C54, 539-540.
Liu, S. X., Wang, Z. M. \& Zhang, B. (1992). Chem. J. Chin. Univ. 13, 1013-1016.
Liu, S. X., Zhang, B., Zhang, H. H. \& Huang, J. L. (1991). J. Inorg. Chem. (Wu Ji Hиа Xue), 7, 414-418.
Nishigaki, S., Yoshioka, H. \& Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
Nonius (1996). CAD-4 ARGUS Software. Linux version. Nonius BV, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Poli, R., Gordon, J. C., Khanna, R. K. \& Fanwick, P. E. (1992). Inorg. Chem. 31, 3165-3167.

Sheldrick, G. M. (1990). SHELXTL/PC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Shriver, D. F., Atkins, P. W. \& Langford, C. H. (1994). In Inorganic Chemistry. Oxford University Press.
Tebbe, K.-F. \& Bittner, M. (1995). Z. Anorg. Allg. Chem. 621, $218-$ 224.

Tebbe, K.-F. \& Nagel, K. (1995). Acta Cryst. C51, 1388-1390.
Zsolnai, L. (1998). XMPA and ZORTEP. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 1506-1508

1,10-Phenanthrolinium (2+) dichloro-iodide(1-) chloride

Zhe-Ming Wang, Yan-Qia Wang, Chun-Sheng Liao and Chun-Hua Yan

State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University: Beijing 100871, People's Republic of China. E-mail: chyan@chemms.chem.pku.edu.cn
(Received 9 March 1999; accepted 4 June 1999)

Abstract

The title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} \cdot \mathrm{ICl}_{2}^{-} \cdot \mathrm{Cl}^{-}$, consists of 1,10-phenanthrolinium ($2+$) cations (phenH2 ${ }_{2}^{2+}$), and ICl_{2}^{-} and Cl^{-}anions. The ICl_{2}^{-}anions occupy two crystallographic sites, one on a twofold axis and the other on a centre of symmetry. The phenH ${ }_{2}^{2+}$ cations build up positive columns along the b direction, while the ICl_{2}^{-}anions form infinite branched zigzag chains running along the a direction. The Cl^{-}anions embedded in the interstices of the positive columns form $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which contribute to the stabilization of the structure.

Comment

During the last decade, there has been considerable interest in the structure and properties of species obtained by combining protonated aromatic nitrogen bases with halide or polyhalide ions (El-Kholi et al., 1988; Hendrixson et al., 1991; Liu et al., 1991, 1992; Tebbe et al., 1995). Among these aromatic nitrogen bases, 1,10phenanthroline is a good candidate for study as it has two close aromatic N atoms which can be neutral, mono-
or diprotonated resulting in diverse structures. In the system 1,10-phenanthroline- $\mathrm{HCl}-\mathrm{KI}-\mathrm{I}_{2}$, several compounds have been obtained under different conditions (Wang et al., 1999), of which the title compound, (I), is one example.

(I)

The crystal structure of (I) consists of diprotonated 1,10 -phenanthroline cations (phenH2 ${ }_{2}^{2+}$), and Cl^{-}and ICl_{2}^{-}anions (Fig. 1). In the phenH ${ }_{2}^{2+}$ cations, the bond lengths are very similar to those in neutral 1,10-phenanthroline (Nishigaki et al., 1978), but the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles [both $122.7(3)^{\circ}$] are significantly greater than the corresponding values in the neutral species [117.2 (6)-117.9 (5) ${ }^{\circ}$], in agreement with other structures containing protonated 1,10 -phenanthroline (Hensen et al., 1998; Lis, 1979). The enlargement of the internal angles at the protonated N atoms was also reported for quinolinium (Liu et al., 1991), 8-hydroxyquinolinium (Balasubramanian \& Muthiah, 1996) and bipyridinium (Liu et al., 1992). The phenH ${ }_{2}^{2+}$ cation is planar and parallel to the ac plane, with deviations from the least-squares plane of less than 0.057 (3) \AA.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.

